discrete dynamic model
In mathematics a dynamic model represents a system which evolves over time. Stochastic data are conventionally excluded, as they are more inherent to theories of probability. It is discrete when it represents a discontinuous evolution over time. In other words time intervals are fixed between the data (these intervals are counted in hours, days, months, years, etc.). In the opposite case it is called continuous.
|
eNq1WEuP2jAYvPMrohx6I4EtC7QNoJZCi7SolIda9bIyyQeYGjvrB4/++jrAaqGKpa6JbyQ248+e8XjiqLPfEG8LXGBGW341qPge0JglmC5b/mzaLzf9TrsUrdEWXXRrBJWgWvO9mCAhWn7WGswBURH8HD58Bv1/4H675EVsvoZYXvVTEpPgKxKrIUqzPl60ZTjxNiBXLGn5qZLHt14kJNdVtHeM/xYpiiEKz28uW9ePtcv3UZiB/QeqEsAfEF3mggK1wowV50BlF0lYMn4w1PvWChuLMQimeAwjJFcjzrY4gSR3iAUiAqwGWeySCfAtAZkNcg1OFSHhq9DQGu3H8DTIr/Kjbu3KvSxXytVGrV6tNxvN2rumHZv8Ym3y14QzKsMEi5SgwwRvUgLBWqSWVIwYl4g4IgGL7rWOHI3D4clI9vl3WPCyIY50M3C9891NKpvNlGsvInr9kltFjMXs7BSOKs6MqMsUlQbD6I9tF6KruYO9mV07j5P7sy4xiOJg/zCa7+8jNSc4tnUzbT8KhJyNB7fr4BMSMOPudv0PTBO2E8W7ySVjjqpPj4ZoOPDu7xtV663xSwvDcIL0FGcphNpVsLjFLAZ0wW6Vh9ZaUVDHZMJiRMCQTcqWlqAl9hylnInY3QY5NeSCfulNbfn/roAfJsfHXGictOLH2t1drf4GbdIPmA5ZgkhLcmU3i9iFJ2vxGefxev2d9rKTEKt4vkespEzF+zDc7XYBhwWBvf7MEIEiGJagPyxMOaTzDz2FUKQd84Ukd0HbeDrbZpSTUzoqeH46/OzYs92cptPbRTp9Rjkl4oJS49HFnXntoFe8fb+EUWdlj678xd0wx+CIpNaiq9Cj5rmIZ0eyZZX2M1l/Wyyw4crDXHEUnu5b2qUozO5a2qW/G0/f/A==
F30E6BmHkGGUVXwp